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Introduction
• Our goal: designing a “contextual bandit” - an 

adaptive experiment with multiple arms  -
where goal is to learn a targeted treatment 
assignment rule

• Tension arises between within-experiment
outcome maximization and finding best policy to 
use AFTER experiment (“policy learning”)

• Propose a heuristic algorithm that balances the 
two goals.

• Implement our method in charitable giving 
experiment.

• Compare with other existing contextual bandit 
algorithms using semi-synthetic data based on 
our experimental data.

Treatment arms

Treatment arms

Characteristics
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Setup and notation
We consider the stochastic contextual bandit 
setting with K treatment arms.

Treatment arms: 

• 𝑤!∈ 𝐾 ≡ 1,… , 𝐾

User arrives at time t: 
• 𝑥! ∈ ℝ" covariates (context)
• 𝑌! 1 , 𝑌! 2 , … , 𝑌! 𝐾 potential outcome 

vector

Algorithm at time t:
• Observes covariates 𝑥!
• Uses past observations to construct 

assignment probabilities 𝑝!
• Selects a treatment arm𝑤!∼ 𝑝! ⋅ 𝑥!
• Observes outcome 𝑌! 𝑤! ∈ ℝ

Unknown to the algorithm:

• Conditional mean outcome function:  

𝑓(𝑥, 𝑤):= 𝔼[𝑌!(𝑤)|𝑥]

• Optimal policy: 

𝜋#(𝑥): = arg𝑚𝑎𝑥
$
𝑓(𝑥, 𝑤)
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Goal 1: Cumulative regret
Most common objective for contextual bandit algorithms: cumulative regret minimization 
(maximize expected outcome DURING the experiment)

Conditional mean outcome function: 
𝑓(𝑥, 𝑤): = 𝔼[𝑌!(𝑤)|𝑥].

Optimal policy:
𝜋"(𝑥): = arg𝑚𝑎𝑥

#
𝑓(𝑥, 𝑤).

Cumulative regret:  ∑!"#$ 𝑓 𝑥!, 𝜋% 𝑥! − 𝑓 𝑥!, 𝑤!

Optimal 
policy

Selected 
treatment arm
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Goal 2: Policy learning (aka “Simple regret”)

𝔼

Simple regret: 𝑅% 𝜋∗ − 𝑅%( +𝜋)
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Tension between simple regret (policy learning) and 
cumulative regret (within-experiment outcomes)
Consider the task of constructing the assignment rule 𝑝!. 
• We want the following to be small for simple regret:

𝑉(𝑝! , 𝜋∗)≔𝐸
1

𝑝! 𝜋∗ 𝑥 𝑥
• However, for cumulative regret we want the following to be large: 

𝐸 A
$∈[(]

𝑓 𝑥, 𝑤 𝑝(𝑤|𝑥)

• If we know 𝜋∗, we can set 𝑝! 𝜋∗ 𝑥 𝑥 = 1 for all 𝑥 and do well on both objectives.

Uncertainty in estimating 𝜋∗ introduces tensions between the two quantities.

• Uniformly sampling arms ensures 𝑉 𝑝! , 𝜋∗ = 𝐾. 

• In attempting to place a higher probability on the estimated optimal arm at any context, “aggressive algorithms” 
may make 𝑉 𝑝! , 𝜋∗ > 𝐾.

5See Krishnamurthy et al 2023 (arxiv.org/pdf/2307.02108.pdf) for recent developments 

https://arxiv.org/pdf/2307.02108.pdf


Survey experiment

age, gender, race, 
religious or not, 
urban/rural, political 
affiliation, last donation

views on immigration, 
views on global 
warming, views on right 
to bear arms, views on 
abortion

how often watch/read 
Fox News, CNN,  WSJ

Treatment: Outcome:Contexts:
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Simulations based on semi-synthetic data
• Contextual bandits algorithms guide 

data collection ⇒ not straightforward 
to reanalyze historically collected data 
to compare algorithms

• For a given x, a different algorithm 
would assign a different treatment 
than what was observed

• Running many parallel experiments to 
compare algorithms can be costly ⇒
rely on simulations based on semi-
synthetic data

bandit #2bandit #1
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TreeBagging algorithm
Obtain assignment probabilities using tree-
policy based bagging algorithm

(1) Impose a decaying lower bound on the 
assignment probabilities 𝑝! (bounds variance 
of policy estimate 𝑉(𝑝! , 𝜋∗))

(2) Tree-bagging with shallow trees avoids 
extrapolation from limited data (robust to mis-
specification), avoids using arms that show 
benefits for very small set of covariates

(3) At the end of the experiment, drop least-
favored arms and learn a policy using only the 
top arms.  (known to work well in non-
contextual bandits)
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Conduct semi-synthetic simulations 
based on pilot data.

Each subplot shows the average 
value of learned policies across 
simulations as we vary one tuning 
parameter (keeping rest at “optimal” 
values).

Contextual bandit algorithms have 
been optimized for cumulative 
regret.

Uniform randomization beats most 
contextual bandits.

Traditional (-1/2) decay rates for 
lower bound on assignment bad for 
policy learning.

Uniform treatment assignment (pure RCT) beats 
adaptive assignment for policy learning
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Targeted policy vs. best non-targeted policy

Value Std.err Diff Std.err p-value

Best non-
targeted 
policy 
(Greenpeace)

4.687 0.208

Targeted 
policy

5.653 0.216 0.966 0.300 0.001

Views on immigration: The US government needs to get tougher on immigration
Views on global warming: The US government should do more to prevent global warming
Views on right to bear arms: The right to bear arms should be limited

1- Strongly disagree, 2 - Somewhat disagree, 3 - Neither agree nor disagree, 4 - Somewhat agree, 5 - Strongly agree10



Conclusion
• We consider the problem of designing an adaptive experiment when the goal is to learn a 

personalized treatment assignment rule.

• Existing contextual bandit algorithms are too “aggressive” in discarding arms and don’t do 
well in policy learning compared to uniform randomization.

• We propose a heuristic algorithm called TreeBagging and apply it in a real-world 
experiment, learning a targeted treatment assignment policy that significantly outperforms 
the best non-targeted policy.

• Semi-synthetic simulations show that TreeBagging outperforms uniform randomization for 
policy learning while yielding a substantial reduction in cumulative regret; not true for 
standard contextual bandit algorithms.
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Thank you!
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